BidVertiser
Thursday, June 10, 2010
DETECTING DNA
A diphenylamine (DPA) indicator will confirm the presence of DNA. This procedure involves chemical hydrolysis of DNA: when heated (e.g. =95 °C) in acid, the reaction requires a deoxyribose sugar and therefore is specific for DNA. Under these conditions, the 2-deoxyribose is converted to w-hydroxylevulinyl aldehyde, which reacts with the compound, diphenylamine, to produce a blue-colored compound. DNA concentration can be determined measuring the intensity of absorbance of the solution at the 600 nm with a spectrophotometer and comparing to a standard curve of known DNA concentrations.
Measuring the intensity of absorbance of the DNA solution at wavelengths 260 nm and 280 nm is used as a measure of DNA purity. DNA absorbs UV light at 260 and 280 nanometres, and aromatic proteins absorb UV light at 280 nm; a pure sample of DNA has the 260/280 ratio at 1.8 and is relatively free from protein contamination. A DNA preparation that is contaminated with protein will have a 260/280 ratio lower than 1.8.
DNA can be quantified by cutting the DNA with a restriction enzyme, running it on an agarose gel, staining with ethidium bromide or a different stain and comparing the intensity of the DNA with a DNA marker of known concentration.
Using the Southern blot technique this quantified DNA can be isolated and examined further using PCR and RFLP analysis. These procedures allow differentiation of the repeated sequences within the genome. It is these techniques which forensic scientists use for comparison, identification, and analysis.
MITOCHONDRIAL DNA
Mitochondrial DNA (mtDNA) is the DNA located in organelles called mitochondria, structures within eukaryotic cells that convert the energy from food into a form that cells can use. Most other DNA present in eukaryotic organisms is found in the cell nucleus.
Nuclear and mitochondrial DNA are thought to be of separate evolutionary origin, with the mtDNA being derived from the circular genomes of the bacteria that were engulfed by the early ancestors of today's eukaryotic cells. Each mitochondrion is estimated to contain 2-10 mtDNA copies.In the cells of extant organisms, the vast majority of the proteins present in the mitochondria (numbering approximately 1500 different types in mammals) are coded for by nuclear DNA, but the genes for some of them, if not most, are thought to have originally been of bacterial origin, having since been transferred to the eukaryotic nucleus during evolution. In most multicellular organisms, mtDNA is inherited from the mother (maternally inherited). Mechanisms for this include simple dilution (an egg contains 100,000 to 1,000,000 mtDNA molecules, whereas a sperm contains only 100 to 1000), degradation of sperm mtDNA in the fertilized egg, and, at least in a few organisms, failure of sperm mtDNA to enter the egg. Whatever the mechanism, this single parent (uniparental) pattern of mtDNA inheritance is found in most animals, most plants and in fungi as well. mtDNA is particularly susceptible to reactive oxygen species generated by the respiratory chain due to its close proximity. Though mtDNA is packaged by proteins and harbors significant DNA repair capacity, these protective functions are less robust than those operating on nuclear DNA and therefore thought to contribute to enhanced susceptibility of mtDNA to oxidative damage. Mutations in mtDNA can in some cases cause maternally inherited diseases and some evidence suggests that they might be major contributors to the aging process and age-associated pathologies.
In humans (and probably in metazoans in general), 100-10,000 separate copies of mtDNA are usually present per cell (egg and sperm cells are exceptions). In mammals, each double-stranded circular mtDNA molecule consists of 15,000-17,000 base pairs. The two strands of mtDNA are differentiated by their nucleotide content with the guanine rich strand referred to as the heavy strand, and the cytosine rich strand referred to as the light strand. The heavy strand encodes 28 genes, and the light strand encodes 9 genes for a total of 37 genes. Of the 37 genes, 13 are for proteins (polypeptides), 22 are for transfer RNA (tRNA) and two are for the small and large subunits of ribosomal RNA (rRNA). This pattern is also seen among most metazoans, although in some cases one or more of the 37 genes is absent and the mtDNA size range is greater. Even greater variation in mtDNA gene content and size exists among fungi and plants, although there appears to be a core subset of genes that are present in all eukaryotes (except for the few that have no mitochondria at all). Some plant species have enormous mtDNAs (as many as 2,500,000 base pairs per mtDNA molecule) but, surprisingly, even those huge mtDNAs contain the same number and kinds of genes as related plants with much smaller mtDNAs.
mtDNA is replicated by the DNA polymerase gamma complex which is composed of a 140 kDa catalytic DNA polymerase encoded by the POLG gene and a 55 kDa accessory subunit encoded by the POLG2 gene.
Tuesday, June 8, 2010
DNA UPTAKE MECHANISM
When DNA uptake and subsequent expression was first demonstrated in vivo in muscle cells, it was thought that these cells were unique in this ability because of their extensive network of T-tubules. Using electron microscopy, it was proposed that DNA uptake was facilitated by caveolae (or, non-clathrin coated pits). However, subsequent research revealed that other cells (such as keratinocytes, fibroblasts and epithelial Langerhans cells) could also internalize DNA. This phenomenon has not been the subject of much research, so the actual mechanism of DNA uptake is not known.
Two theories are currently popular – that in vivo uptake of DNA occurs non-specifically, in a method similar to phago- or pinocytosis, or through specific receptors. These might include a 30kDa surface receptor, or macrophage scavenger receptors. The 30kDa surface receptor binds very specifically to 4500-bp genomic DNA fragments (which are then internalised) and is found on professional APCs and T-cells. Macrophage scavenger receptors bind to a variety of macromolecules, including polyribonucleotides, and are thus also candidates for DNA uptake. Receptor mediated DNA uptake could be facilitated by the presence of polyguanylate sequences. Further research into this mechanism might seem pointless, considering that gene gun delivery systems, cationic liposome packaging, and other delivery methods bypass this entry method, but understanding it might be useful in reducing costs (e.g. by reducing the requirement for cytofectins), which will be important in the food animals industry.
DNA VACCINATION
DNA vaccination is a technique for protecting an organism against disease by injecting it with genetically engineered DNA to produce an immunological response. Nucleic acid vaccines are still experimental, and have been applied to a number of viral, bacterial and parasitic models of disease, as well as to several tumour models. DNA vaccines have a number of advantages over conventional vaccines, including the ability to induce a wider range of immune response types.
Vaccines are among the greatest achievements of modern medicine – in industrial nations, they have eliminated naturally-occurring cases of smallpox, and nearly eliminated polio, while other diseases, such as typhus, rotavirus, hepatitis A and B and others are well controlled.Conventional vaccines, however, only cover a small number of diseases, and infections that lack effective vaccines kill millions of people every year, with AIDS, hepatitis C and malaria being particularly common.
First generation vaccines are whole-organism vaccines – either live and weakened, or killed forms. Live, attenuated vaccines, such as smallpox and polio vaccines, are able to induce killer T-cell (TC or CTL) responses, helper T-cell (TH) responses and antibody immunity. However, there is a small risk that attenuated forms of a pathogen can revert to a dangerous form, and may still be able to cause disease in immunocompromised people (such as those with AIDS). While killed vaccines do not have this risk, they cannot generate specific killer T cell responses, and may not work at all for some diseases. In order to minimise these risks, so-called second generation vaccines were developed. These are subunit vaccines, consisting of defined protein antigens (such as tetanus or diphtheria toxoid) or recombinant protein components (such as the hepatitis B surface antigen). These, too, are able to generate TH and antibody responses, but not killer T cell responses.
DNA vaccines are third generation vaccines, and are made up of a small, circular piece of bacterial DNA (called a plasmid) that has been genetically engineered to produce one or two specific proteins (antigens) from a micro-organism. The vaccine DNA is injected into the cells of the body, where the "inner machinery" of the host cells "reads" the DNA and converts it into pathogenic proteins. Because these proteins are recognised as foreign, when they are processed by the host cells and displayed on their surface, the immune system is alerted, which then triggers a range of immune responses. These DNA vaccines developed from “failed” gene therapy experiments. The first demonstration of a plasmid-induced immune response was when mice inoculated with a plasmid expressing human growth hormone elicited antibodies instead of altering growth
Subscribe to:
Posts (Atom)